\qquad
\qquad
\qquad Symbol No. in Words: \qquad
\qquad
Faculty: Medicine and Allied Health Sciences

GROUP A (Multiple Choice Questions)

i. Answers should be given by filling the Multiple Choice Questions' Answer Sheet.
ii. \quad Rough can be done in the main answer sheet
iii. Maximum time of 10 minutes within the total time is given for this group.

1. Which of the following is correct?
b. $\left\lceil n=\int_{0}^{\infty} e^{-x} x^{n-1} d x, n>0\right.$
c. $\quad n=\int_{0}^{\infty} e^{-x} x^{n} d x, n>0$
d. $\left\lceil n=\int_{0}^{1} e^{-x} x^{n-1} d x, n>0\right.$
e. $\left\lceil n=\int_{0}^{1} e^{-x} x^{n} d x, n>0\right.$
2. A differential equation $f(x) d x+g(x) d x=0$ is called....... if it can be written as $\int f(x) d x+$ $\int g(x) d x=c$
a. Homogeneous
b. Exact
c. Linear
d. Separable
3. If $f^{I I}(X)=0$ then it gives
a. Point of inflection
b. Stationary point
c. Maximum point
d. Minimum point
4. In $\int f(x) d x, f(x)$ is called...
a. Variable
b. Homogeneous
c. Integrand
b. Constant
5. The area of ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is
a. 25π sq. Units
b. $12 \pi \mathrm{sq}$. Units
c. 4π sq. Units
b. 6π sq. Units

Marks Secured: In Words:	Code No.	Multiple Choice Questions' Answer Sheet	
		1. (A) (B) (C) (D)	6. (A) (B) (C) (D)
Examiner's Sign: ___ Date:		2. (A) (B) (C) (D)	7. (A) (B) (C) (D)
Scrutinizer's Marks:	A	3. (A) (B) (C) (D)	8. (A) (B) (C) (D)
In Words:	(B) $]^{(1)}$	4. (A) (B) (C) (D)	9. (A) (B) (C) (D)
Scrutinizer's Sign: ___ Da		5. (A) (B) (C) (D)	10. (A) (B) (C) (D)

MANMOHAN TECHNICAL UNIVERSITY

Office of the Controller of Examinations
Budhiganga-4, Morang, Koshi Province, Nepal
Exam Year: 2080, Mangshir

Faculty: Medicine and Allied Health Sciences	Level: Bachelor	
Program: Pharmacy	Time: 1.5 Hours	
Subject: Mathematics for Pharmacy (BP106)		
Candidates are required to give their answers in their own words as far as practicable.		
\checkmark	The figures in the margin indicate Full Marks.	
\checkmark	Assume suitable data if necessary.	

GROUP A (Multiple Choice Questions and Answer Sheet in separate paper) [5x1=5]

GROUP B (Problem Based Question)

1. What is the significance of the derivative in physical context? In a population, the number of people infected with a disease at time t is modeled by $I(t)=\frac{3000}{1+e^{-0.1 t}}$. Determine the rate at which the infection is spreading at 10 weeks.

GROUP C (Long Answer Questions - Attempt Any Two)

2. Solve $(x+y+1) \frac{d y}{d x}=1$
3. Find $\frac{d y}{d x}$ if $y=\frac{x \sqrt{x^{2}-a^{2}}}{2}-\frac{a^{2}}{2} \log \left(x+\sqrt{x^{2}-a^{2}}\right)$
4. Find the Laplace transform of
a. $\cos \alpha t$
b. $\sin \alpha \mathrm{t}$

GROUP D (Short Answer Questions - Attempt Any Three)
5. Evaluate: $\int \sec x d x$
6. Find the area bounded by y-axis the curve $x^{2}=4 y, y=0, y=2$.
7. Evaluate by using Gamma function.

$$
\int_{0}^{a} \frac{x^{4}}{\sqrt{a^{2}-x^{2}}} d x
$$

8. Find maximum and minimum values of $x^{2} y$ when $x+y=5$.
